A summary of the basic commands for using NumPy.
| Operation | Command | Description |
| Import NumPy | import numpy as np | Import the NumPy library |
| Create Array | np.array( [1, 2, 3] ) | Create an array from a list |
| Array of Zeros | np.zeros( 5 ) | Create an array of zeros |
| Array of Ones | np.ones( 5 ) | Create an array of ones |
| Identity Matrix | np.eye(3) | Create a 3x3 identity matrix |
| Full Array |
np.full( (3, 3), fill_value ) | Create an array filled with a specific value |
| Range Array | np.arange(10) np.range(10) |
Create an array with a range of values arange() : float range() : integer |
| Linspace | np.linspace(0, 1, 10) | Select elements based on a condition |
| Arithmetic Operation | array + 2 | Add 2 to each element of the array |
| Element-wise Addition | array_1 + array_2 | Add two arrays element-wise |
| Reshape Array | array.reshape((5, 1)) | Reshape an array |
| Access Element | array[0] | Access the first element of the array |
| Slice Array | array[1:4] | Access a slice of the array |
| Sum | np.sum(array) | Calculate the sum of the array elements |
| Mean | np.mean(array) | Calculate the mean of the array elements |
| Max | np.max(array) | Find the maximum value in the array |
| Min | np.min(array) | Find the minimum value in the array |
반응형
'Python' 카테고리의 다른 글
| Python_N-003. Data Type in array (0) | 2025.01.19 |
|---|---|
| Python_N-002. random module (0) | 2025.01.18 |
| Python_G-010. class vs instance (0) | 2025.01.17 |
| Python_G-009. import vs from ... import vs from... import * (0) | 2025.01.17 |
| Python_G-008. Function (0) | 2025.01.16 |